Hormone Therapy May Benefit Cognition, Memory

By Michele G. Sullivan
Mid-Atlantic Bureau

Chicago — Hormone therapy might preserve cognition and memory in postmenopausal women and attenuate some cognitive deficits in Alzheimer’s disease, new research suggests.

Controversy exists over the possible cognitive benefits of hormone therapy in older women. Mary Tierney, Ph.D., said, at the International Conference on Alzheimer’s Disease. “While preclinical and observational studies have shown a positive effect of estradiol on the brain and cognitive function, randomized controlled trials using conjugated equine estradiol have shown no treatment effects in women at risk for Alzheimer’s disease, or in women who have the illness.”

And the oft-cited Women’s Health Initiative Memory Study suggested that hormone therapy might even hurt, not help, said Dr. Tierney of the Sunnybrook Health Sciences Centre, Toronto.

In a new 2-year trial, Dr. Tierney and colleagues randomized 142 women aged 61–87 to either placebo or to 1 mg estradiol daily plus 0.35 mg progestin 3 days per week. None of the women had dementia, but all had normal or below normal baseline memory scores. The subjects’ mean age was 74; mean age at menopause was 49. Multivariate analysis controlled for age, years of education, apo E4 status, and prior hormone therapy use. There was no significant difference between groups on the primary end point of delayed recall, Dr. Tierney said. But when she split the group according to baseline California Verbal Learning Test (CVLT) scores, significant differences did emerge. Compared with women who scored below the 50th percentile on baseline, those on therapy who scored above the 50th percentile showed significantly less decline in delayed verbal recall than did those in the placebo group. Similar, but nonsignificant, differences occurred on immediate recall, interference recall, cued recall, and recognition memory.

“The critical period for estrogen exposure to benefit cognition may not be limited to the menopause transition, since these women were more than 20 years postmenopausal,” but might also be related to the state of brain function when therapy is initiated, said Dr. Tierney.

In an interview with World Neurology, Victoria Luine, Ph.D., said, “Recent studies on cognition in aging animals are promising.”

See Hormone Therapy • page 8

Dakar Teaching Course Is a Success

Based on an Interview with Amadou Gallo Diop, M.D., Ph.D.
Chairman of WFN Africa Committee

The World Federation of Neurology’s African initiative has borne fruit: The first European Federation of Neurological Societies regional teaching course in francophone sub-Saharan Africa took place at the Université Cheikh Anta Diop in Dakar, Senegal, on June 26–28, 2008, in collaboration with the World Federation of Neurology (WFN) and the International Brain Research Organisation (IBRO).

The course was the direct result of the decision made in London in December 2006 by Dr. Johan Aarabi, when he was elected president of WFN, to set up the WFN Africa Initiative, the Task and Advisory Force for Neurology in Africa (TAFNA) in 2007, and the Africa Committee of WFN in April 2008. Dr. Cheikh S. Boye, dean of the faculty of medicine, obtained free use of the university’s facilities at the Université Cheikh Anta Diop and the department of neurology for giving us their blessing and support.

We acknowledge the dedication of EFNS President Jacques De Reuck and his Africa Project Manager Dr. Jean-Michel Vallat, and the great help of Evelyne Sipido, liaison officer of the EFNS, who spent a huge amount of time organizing, e-mailing, calling, re-calling, and following every step of the planning. We also are indebted to the authorities at the Université Cheikh Anta Diop and the department of neurology for giving us their blessing and support.

It would have been difficult to hold the course if IBRO, UNESCO, and the Pan African Association of Neurological Societies (PAANS), and the Pan Arab Union of Neurological Societies (PAUNS) had not shared with us their generous and spontaneous human, financial, and material support. Dr. Raad Shakir, secretary general of the WFN, and Prof. Raj Kalaria, chair of IBRO’s Africa Committee, took part in the regional teaching course.

The course in Dakar was conducted with two themes: peripheral neuropathies and neurodegenerative disorders. Faculty delivered lectures on epidemiology, symptoms, treatment, and management in the morning; cases were discussed in the afternoon.

The course benefited from the expertise of Dr. Gilbert Avoe (Benin), Dr. J. L. De Reuck (Belgium), Dr. J. Dumas (France), Dr. M. Gonce (Belgium), Dr. R. Gouider (Tunisia), Dr. E. Grunthzky (Togo), Dr. R. Hughes (United Kingdom), Dr. R. Kalaria (United Kingdom-Kenya), Dr. B. Kouassi (Ivory Coast), Dr. M.M. Ndiane (Senegal), Dr. A. Njumehni (Cameroon), Dr. M. Rossor (United Kingdom), Dr. R. Shaker (United Kingdom), Dr. A. Tham (Senegal), Dr. J. M. Vallat (France) and Dr. D. Vodusek (Slovenia). Faculty came from Belgium, Benin, Cameroon, Côte d’Ivoire, France, and United Kingdom.

Participants gather from the first EFNS-WFN-IBRO-UNESCO Neurology Regional Teaching Course in Dakar, Senegal. The course focused on peripheral neuropathies and neurodegenerative disorders.
WORLD NEUROLOGY, an official publication of the World Federation of Neurology, provides reports from the leadership of the WFN, its member societies, neurologists around the globe, and news from the cutting edge of clinical neurology. Content for WORLD NEUROLOGY is provided by the World Federation of Neurology and Elsevier Global Medical News.

Disclaimer: The ideas and opinions expressed in WORLD NEUROLOGY do not necessarily reflect those of the World Federation of Neurology or the publisher. The World Federation of Neurology and Elsevier, Inc., will not assume responsibility for damages, loss, or claims of any kind arising from or related to the information contained in this publication, including any claims related to the products, drugs, or services mentioned herein.

Editorial Correspondence: Send editorial correspondence to World Neurology, 5635 Fishers Lane, Suite 600, Rockville, MD 20852, U.S.A.; worldneurology@elsevier.com; Phone: +1-800-798-1822

Address Change: For change of address to +1-973-290-8245

Copyright © 2008, by the World Federation of Neurology

Headquarters Has Moved

WFN Headquarters Office has moved to more modern premises after 10 years in the historic Medical Society of London building on Chandon Street in London. The new home is in Richmond-upon-Thames, easily accessible to central London and from Heathrow airport. In addition to better office facilities and electronic communication, the new offices also include a meeting room.

The new mailing address is Hill House, Heron Square, Richmond-upon-Thames, TW9 1EP, UK.

The telephone numbers are +44 (0)208 439 9556/9557; the fax is +44 (0)208 439 9409. The WFN’s new e-mail address is info@wfneurology.org.

Committee Has Big Plans for 2009

A t the Annual Meeting of the American Academy of Neurology, the WFN’s Research Committee met to review and discuss the 2009 World Congress of Neurology (WCN).

The research committee has been involved in deliberations for the past several World Congresses and has worked closely with local organizing committees and WFN trustees. The WCN 2009 Scientific Program, “Innovation in Neurology,” was presented in detail by program cochair Dr. Naraporn Prayoonwiwat, representing the Thai Neurological Society and the WCN local organizing committee. A program was reviewed that included stroke, multiple sclerosis, epilepsy, movement disorders/dementia, and headache/pain.

Information about the parallel education program lectures and sessions was given by Dr. Swarporn Chankrachang, chair of the WCN Education Committee. Dr. Prayoonwiwat and Dr. Chankrachang were praised for their skill in developing the WCN 2009 Scientific and Educational programs.

Finally, Dr. Werner Hacke, a WFN trustee, outlined a proposal in which more groups from the research committee and individual research committee members will be included in an organizational plan still being developed for the governance of future Congresses.

Meanwhile, the committee urges WFN members to become active in the research groups so that future World Congresses will have renewed interest from the next generation of neurologists.

Dr. Rosenberg is the Research Committee Chair and a WFN trustee.

World Federation of Neurology Site Now Updated

The updated World Federation of Neurology Web site is now online. It features an inviting, easy-to-use design. Check it out at www.wfneurology.org.

Nomination Deadline Extended

Nominations are invited from national neurologic societies and individuals for the following World Federation of Neurology posts:

First Vice President (to take office Jan. 1, 2010).

Elected Trustee (to take office October 2009).

Elections will take place at the Annual General Meeting (AGM) of the Council of Delegates during the Bangkok World Congress of Neurology in Thailand, currently scheduled for Oct. 24-30, 2009.

The proposed candidates for first vice president will be required to formulate a full statement of their goals and objectives for the organization, which will be published. The previous deadline for receipt of nominations is being extended.

Names of those candidates who are willing to serve must be received at the WFN London headquarters by Friday, Nov. 14, 2008, at the latest.

The proposed candidates also should be sure to receive the official support of their respective national societies.

The names of those who are short-listed will be published in the March 2009 issue of WORLD NEUROLOGY.

They will also be posted on the WFN Web site at least 6 months before the date of the election. Any additional nominations must be submitted jointly by five or more delegates at least 30 days before the Annual General Meeting.
DAKAR 2008—Collaboration for the Future

BY JOHAN A. AARLI, M.D.
President, WFN

As seen on the cover of this issue, the first international teaching course in neurology in Africa took place in Dakar, Senegal, June 26–28, 2008. Both the course and the subsequent neuroscience seminar given at the University Cheikh Anta Diop were successes. There are many excellent training courses in neurology every year. Why did the Dakar course receive such attention? First of all, the program was excellent. Discussion of the selected topics—neuropathies and dementia—was led by prominent speakers from Belgium, Benin, Cameroon, Cote d’Ivoire, France, Italy, Senegal, Slovenia, Togo, Tunisia, and the United Kingdom. The course addressed many of the practical difficulties of practicing in rural areas, of particular importance to the audience of nearly 150 trainees and specialists from countries throughout Africa.

There are two other important reasons for this success. One is that the meeting so clearly reflected the basic idea of the Africa Initiative: With Africa—For Africa. The other is that it was a joint venture among several international organizations that worked hand in hand to make this course just the first of a series to be held on African soil.

This African initiative had many roots. The University Cheikh Anta Diop, in Dakar, was instrumental in preparing the ground for the meeting, which was opened by Prof. Cheikh S. Boye, dean of the faculty of medicine.

It had been decided at the 2007 meeting of the Pan-African Society of Neuroscientists in Kinshasa to organize an international teaching course in clinical neurology in sub-Saharan Africa in 2008. The Africa Committee of the World Federation of Neurology, chaired by Amadou Gallo Diop, worked hard to realize the meeting. In a region where neurology is underdeveloped, the Pan-African Association of Neurological Sciences (PAANS), the umbrella organization that brings together African neurosurgeons and neurologists, supported the initiative. That organization has increasingly stronger influence on health authorities.

The International Brain Research Organisation (IBRO), in partnership with UNESCO’s International Basic Sciences Programme, has been a powerful force to develop and sustain brain research across the African continent. IBRO and the International Basic Sciences Programme (IBSP) of UNESCO have formed a partnership to create an initiative called Building Brain Sciences in Africa. Over the last 2 years, it has developed close links with the WFN and the European Federation of Neurological Societies (EFNS) to promote clinical neurosciences in Africa. This new collaboration strengthens the long-standing association of UNESCO and IBRO as the core of a broad-based partnership with other international and African organizations such as the EFNS and the WFN.

The EFNS had a central role in the conception and content of the teaching course. The organization has long encouraged strong collaboration in Africa, initially with North African (Francophone) countries and then with the many Anglophone African countries. It remains a forceful partner with the WFN in the Africa initiative. The Pan-Arab Union of Neurological Societies (PAUNS) also has a strong basis in the North African countries and always has been available to support African clinical neurology, teaching, and research.

The World Neurology Foundation (WNF), the charitable arm of WFN in North America, also was involved. They provided tool kits that contained neurologic equipment necessary for clinical examination that were distributed among meeting participants.

The Dakar course represented a primarily African initiative with many international organizations collaborating in a smooth and effective manner. It has paved the way for the Teaching Course in Neurology in Africa 2009.

The Dakar course provided a symposium at the upcoming 2009 World Congress of Neurology in Bangkok; however, it has tentative plans to present a symposium on the history of epilepsy at a subsequent world congress. Provisional topics include:

- Epilepsy in Babylonia
- The Sacred Disease
- Epilepsy in Galenic Medicine
- Electricity and Chemistry
- Robert Bentley Todd and John Hughlings Jackson
- The Synthesis of Phenobarbital
- Hans Berger and the Use of the Electroencephalogram in the Diagnosis of Epilepsy
- Social Constructs in the Care of People with Epilepsy

The group does not plan to present a symposium at the upcoming 2009 World Congress of Neurology in Bangkok; however, it has tentative plans to present a symposium on the history of epilepsy at a subsequent world congress. Provisional topics include:

- Epilepsy in Babylonia
- The Sacred Disease
- Epilepsy in Galenic Medicine
- Electricity and Chemistry
- Robert Bentley Todd and John Hughlings Jackson
- The Synthesis of Phenobarbital
- Hans Berger and the Use of the Electroencephalogram in the Diagnosis of Epilepsy
- Social Constructs in the Care of People with Epilepsy

The group will follow tradition and publish this Symposium in its journal.

The research group maintains close working contacts with other organizations devoted to the history of neurology, neuroscience, and medicine, including the International Society for the History of Medicine and the History section of the American Academy of Neurology. It aims for closer links with such organizations; inquiries may be directed to gk York@ucl.ac.uk.

Dr. Yonx is the chair of the WFN research group on the history of the neurosciences.
REPORT FROM THE EDUCATION COMMITTEE:
Ethiopia Makes Good on WFN Outreach Efforts
BY THEODORE MUNSAT, M.D.

Two recently completed external reviews of the neurol- ogy department and residents at Addis Ababa University in Ethiopia have already resulted in correcting significant department needs and confirming the expertise of young neuro- logists in that country. In December 2007, at the request of Dr. Guta Zenebe, neurology department chair- man, and members of the Association of Neurologic Sciences of Ethiopia, the neurology department— founded by Dr. Zenebe—was visited by WFN Education Committee members Dr. Gretchen Bleck, associate pro- fessor and director of the International Neurologic and Psychiatric Epidemiology program at Michigan State University, East Lansing (U.S.A.); Dr. Arnoud Gal- lo Diop, professor and chairman of neurology at Dakar (Senegal) University; and myself. Our goal was to carry out an external program that would make recommen- dations for development.

Upon arrival, we met with the Ethiopian minister of health, the dean of the medical school at Addis Ababa University, and the chairs of all the relevant depart- ments at the school. We visited both inpatient and outpatient facili- ties, and discussed them with faculty and residents. Upon learn- ing, we drew up a report of our findings that was felt to be of great value to the department of neurology at the medical school. And we were told that several of the needs outlined in it have al- ready been corrected.

One cannot underestimate the enormous difficulty in providing adequate education for health providers in this country that is so lacking in resources, or the re- markable results that have been obtained by the neurologists who work there. Then, in April of this year, at the request of the department of neurology at Addis Ababa University, several other af- filiates of the Education Committee of the WFN (Dr. James Johnson, consultant neurologist, Auckland, New Zealand; Prof. Pierre Billi, professor emeritus of neurology, University of KwaZulu-Natal, Durban, South Africa; and Dr. Redda Tekle-Haimanot, profes- sor of neurology, Addis Ababa University) carried out an exter- nal evaluation of the first group of neurology residents graduates in that country.

All neurology residents at Ad- dis Ababa University have had 2-3 years of internal medicine train- ing, which is very appropriate for neurology practice in their coun- try. Each resident is required to carry out a research project and defend a thesis. Dr. Zenebe and his associate Dr. Mehula Zeben- gius have established a laudable training program with specific objectives for each year of train- ing, subspecialty training where available, and effective evaluation and feedback mechanisms.

The WFN external evaluation consisted of a multiple choice and essay written examination, an Ob- jectively Structured Clinical Ex- amination, and a bedside evalua- tion of cases. In the examiner’s words, “The candidates were re- markably knowledgeable and con- fident, considering the lack of ex- posure to certain facilities such as imaging and electrophysiology.

Because experience suggests that residents receiving training in their home country are much less likely to emigrate than are those who receive their training elsewhere, these results were espe- cially welcomed, and they re- informed the WFN Education Committee’s view that resident training is best carried out in one’s own country. The six grad- uates will join the eight neurolo- gists currently in practice.

The results of these two exter- nal reviews reinforced our view that carefully targeted WFN educa- tion efforts, in conjunction with other resources, can produce im- portant results with modest re- source inputs. In one example, neurologic care in Ethiopia has been assisted for many years by a remarkable organization of expatri- ate Ethiopian physicians and neuroscientists led by Dr. Etawa- gaw Mehart, a neurologist in pri- vate practice in Morehead, Ken- tucky (U.S.A.) and an honorary consultant at Addis Ababa Uni- versity. The nonprofit organiza- tion that he has established, Peo- ple to People, has provided major educational and resource assis- tance to the neurology depart- ment at the university, including electronic communication equip- ment, books, organization of con- ferences, and so on.

The department also receives support from the Mayo Clinic, Rochester, Minnesota (U.S.A.), in an effort led by Dr. James Bower to provide a cadre of visiting pro- fessors who are actively involved with resident, medical school, and nonphysician neurologic ed- ucation. Additionally, Dr. Joseph Berger, chair of the department of neurology at the University of Kentucky, Lexington (U.S.A.), has been involved with a neuro-AIDS program. Finally, the department of neurology at McGill Universi- ty, Montreal, Canada, has been an active participant in educational support for Ethiopia over many years.

No doubt as a result of all this outreach, the department of neu- rology at Addis Ababa has a plan to establish a neuroscience insti- tute at the university to house the neurology, neurosurgery, and psy- chiatry. The Ethiopian Ministry of Health and the Ministry of Edu- cation have indicated funding for this purpose. Ethiopia is also a new but important participant in the WFN continuing educa- tion program. With approxi- mately 80,000,000 people in sub- Saharan east Africa, Ethiopia has more than its share of health, re- source, and political problems. But despite many hurdles, neuro- logists in Ethiopia have the will, insight, skills, and persis- tence to provide better care for the citizens of their country. I am certain that, with help from their many friends, their future is bright.

Dr. Munsat, emeritus professor of neurology at Tufts University, Boston, U.S.A., is chair of the WFN’s Education Committee.

At Stockholm Brain Institute, Collaboration Is Key
BY HANS FORSSBERG, M.D., AND ÅSA HEDBERG, PH.D.

At the Stockholm Brain Institute, clinical researchers from several neurologic dis- ciplines work together with basic neuro- scientists and computational scientists to gain better understanding of cognitive brain functions in health and disease.

The Stockholm Brain Institute (SBI) is a research center for cognitive and compu- tational neuroscience based on 10 research groups from the three universities in Stock- holm: Karolinska Institute, Royal Institute of Technology, and Stockholm University. The groups represent key scientific areas from basic research areas (mechanisms, behavioral sciences, and mathematical sciences. SBI is located on the premises of the Uni- versity Hospital, which allows interaction with clinicians from disciplines such as psy- chiatry, neurology, and neurosurgery. The clinicians’ influence on the cen- ter results in clinically relevant projects. Research is mainly focused on three cog- nitive functions: learning/ memory, emotion, and action/perception. These areas are ap- proached from three per- spectives: normal develop- ment and aging; sex differences; and patho- physiology, with a focus on neurodevelopmental disorders (autism, atten- tion-deficit/hyperactivity disor- der, cerebral pal- sy); psychiatric disorders (schizophrenia); and neu- rodegenerative disorders (Alzheimer’s, Parkinson’s disease, Huntington’s dis- ease). The goal is to explore the pathologi- cal processes underlying these disorders to develop new principles for prevention and intervention, as well as new biomarkers. The SBI has a systems neurobiol- ogy approach: that is, from genes, cells, and neural networks to cognitive functions and behavior. SBI is also unique in its strong computational group. Mathemati- cal modeling is used to achieve a coherent understanding of the multilevel systems that underlie cognitive functions, in which numerous factors vary independently. Based on empirical data, the work of the computational neuroscience group builds mathematical models of neural networks by means of single neurons with specific properties (such as ion channels and in- tracellular pathways). These models can test various hypotheses and disease path- ways.

SBI has developed strong alliances with partners from the biomedical and biotech- nology industries, including AstraZeneca, IBM, Neurosearch, and Karolinska Inno- vation, with whom SBI researchers initi- ated Cognem, a small biotech company. The collaboration includes the building of common infrastructure, collaborative re- search projects, and a research school, al- lowing SBI to build up a top-of-the-line PET facility with high-resolution research tomography combined with a Blue Gene L computer for image reconstruc- tion and analysis. The ultrafast computer also is used for mathematical modeling and real-time simulation of neural net- works with several hundred thousand neurons.

Dr. Forssberg is director of SBI, where clinicians and basic scientists drive neurologic research.

Dr. Munsat participated in rounds on a recent trip to the department of neurology at Addis Ababa University in Ethiopia.
Lisak Is Fellow by Distinction of Royal College of Physicians

His research helped to define immune processes in the pathogenesis of neurologic disorders.

By Denise Napoli

Dr. Robert Lisak, an American, has been elected as a fellow “by distinction” of the Royal College of Physicians in London, one of the highest honors the United Kingdom–based society can bestow.

Of 13 such fellowships awarded this year, only 5 went to Americans.

Dr. Lisak, editor of the Journal of the Neurological Sciences (the official journal of the World Federation of Neurology), has been conducting research and taking a leadership role within the field of neurology for nearly half a century.

“I was involved in some of the earliest studies examining the role of T cells, B cells, and antibodies in the pathogenesis of multiple sclerosis,” he said.

He cited, for example, a study of antimyelin antibodies in neurologic diseases (Arch. Neurol. 1974;31:163-7). He also has conducted important research into the in vitro cell-mediated immunity of cerebrospinal fluid lymphocytes to myelin basic protein in primary demyelinating diseases (N. Engl. J. Med 1977;297:850-3), as well as studies concerning the animal model of experimential autoimmune encephalomyelitis.

In the field of myasthenia research, Dr. Lisak’s work “has focused on immune regulatory mechanisms and cellular interactions that allow for the development of this autoimmune disease. Since I have also been involved in therapeutic trials and studies, I guess I have been doing what is now called translational research for 42 years.”

Dr. Richard Lewis, professor and associate chair of neurology with Dr. Lisak at Wayne State University, Detroit, said in an interview that he has known Dr. Lisak for more than 30 years.

A resident at the University of Pennsylvania, Philadelphia, when Dr. Lisak was on the faculty, Dr. Lewis recounted that Dr. Lisak’s passion for research “bordered on the obsessive.”

“I was impressed at that time by his encyclopedic knowledge, his enthusiasm for neurology—particularly for the immunologic disorders—and his incredible energy and drive.”

“(Dr. Lisak) was doing translational research before the term was coined. I remember drawing extra tubes of (cerebrospinal fluid) on every patient I did a lumbar puncture on, so that Dr. Lisak could investigate immunologic markers of disease,” commented Dr. Lewis.

Dr. Lisak earned his MD at the College of Physicians and Surgeons, Columbia University, New York.

He also trained in medicine at Montefiore Medical Center and the Bronx Municipal Hospital, both in New York.

His neurology and immunology training took place at the University of Pennsylvania, Philadelphia, and at the National Institute of Mental Health.

Additionally, Dr. Lisak also completed a Fulbright fellowship at the University of London.

Some of Dr. Lisak’s upcoming projects include combining the use of molecular biologic techniques with cell biology, and immunologic approaches to study in further detail the effect of cytokines on glial cells and neurons, work done in collaboration with Joyce Benjamins, Ph.D., and others.

“In myasthenia gravis, Samia Ragheb, I, and other members of our neuromuscular group are looking at how a B-cell factor called BAFF may be involved in the evolution of the autoimmune process. And as in the past when I was at Penn and London, I have had the benefit of fantastic collaborators.”

Dr. Lisak said that his research over the years has been supported by many institutions, including the National Institutes of Health, the National MS Society, the Muscular Dystrophy Association, the Guillain-Barré Syndrome/Chronic Inflammatory Demyelinating Polineuropathy Foundation, the Myasthenia Gravis Foundation of America, the Fulbright-Hays grant, and several pharmaceutical companies. He also thanked the department of neurology at Wayne State, his current research home.

“The honor also reflects on the department of neurology at Wayne State University, and its accomplishments, as well as the continued improvement in the Journal of the Neurological Sciences.”

His research helped to define immune processes in the pathogenesis of neurologic disorders.

Dr. Robert Lisak

Dr. Lisak Is Fellow by Distinction of Royal College of Physicians

Biogen Idec and Multiple Sclerosis

Committed to improving lives of people with MS
Fitness May Slow Brain Atrophy in Alzheimer’s

By Michele G. Sullivan
Mid-Atlantic Bureau

Chicago — Keeping fit may help reduce brain atrophy in patients with early Alzheimer’s, researchers said at the International Congress of Alzheimer’s Disease.

An exercise-tolerance study confirmed that the hippocampus was significantly larger in patients who had higher fitness levels, Dr. Jeffrey Burns said at the meeting, which was sponsored by the Alzheimer’s Association. The association with fitness level also was found with whole-brain volume during a previous study in the same cohort, he added in an interview: “Those in the lower half of fitness level have four times more brain atrophy than (do) those in the higher fitness group,” compared with normal aging, said Dr. Burns, director of the Hoogle Brain Imaging Center at the University of Kansas, Kansas City (U.S.A.).

In an interview with World Neurology, Dr. Yves Rolland of Hôpital La Grave-Casselardit in Toulouse, France, who was not involved in the current study, said it added neuroimaging evidence to the available epidemiological and basic research. “However, no randomized controlled trials have yet demonstrated that regular physical activity, a modifiable lifestyle factor, prevents dementia.”

In the current study, Dr. Burns and his colleague, Robyn Honea, Ph.D., evaluated cardiorespiratory fitness in 119 subjects older than 60; 56 had no dementia, and 63 had early-stage Alzheimer’s. All undertook a treadmill test, which measured peak oxygen consumption during the most strenuous part of the test. They also underwent MRI. All of the AD patients showed disease-related atrophy in the hippocampus, temporal cortex, and parietal cortices. But patients with higher fitness levels had significantly greater white matter volume in the hippocampus, inferior temporal gyrus, and parietal gyrus.

“We found that the level of fitness was strongly related to volume in the parietal area, and also in the hippocampus,” Dr. Burns said.

“That affected early in Alzheimer’s, and the brain undergoes a lot of atrophy in that region as the disease progresses.”

He noted that it is not possible to characterize the percentage of volume preserved in the more fit subjects, because the measurement tool—voxel-based morphometry—provides only a linear correlation. “But on the whole, people who were fit had larger brain volumes in the white and gray matter areas.”

In another interview with World Neurology, Laura Eggemont, Ph.D., of Vrije Universiteit, Amsterdam, who was also not involved in the study, said that the findings were timely and relevant, but it was unfortunate that the level of cognitive functioning was not also mentioned. “The literature on healthy cognitive aging also shows a strong relationship between level of physical activity and brain volume, and some randomized controlled trials have shown that aerobic physical activity interventions benefit cognitive function, specifically higher-order executive control processes.”

Reduced atrophy in both gray and white matter could also have implications for cognitive and independent functioning. However, a previous study showed that, although more active AD patients had reduced brain atrophy they did not show better cognitive functioning after controlling for age (Neurology 2008;71:210-6).

As understanding of the relationship grows, exercise prescriptions could become part of an Alzheimer’s treatment program, Dr. Burns suggested. Dr. Rolland added that physical activity is an especially appealing low-cost, low-risk alternative treatment for this major public health priority.

“In addition to the multiple reasons for engaging in physical activity, preserving brain health could be a strong and convincing argument to promote activity in the population and one which could have a major impact on medical practice and public health.”

However, Dr. Eggemont advised caution regarding exercise in the elderly, whose ability is often hampered by disease or disability.

Neither of the researchers disclosed any conflicts. ■

Partial Dopa Agonist Gives Benefit in Early PD

By Patrice Wending
Chicago Bureau

Chicago — Pardoprunox, a partial dopamine D2- and D3-receptor agonist and full serotonin 5-HT1A receptor agonist, significantly improved symptoms in patients with early Parkinson’s disease in a multicenter phase II clinical trial.

Investigators randomized 139 patients with idiopathic PD to placebo or pardoprunox titrated from 9 mg/day to 45 mg/day. Mean age was 61 ± 7.5 years. Of the 70 patients randomized to placebo, 22 discontinued because of adverse events (13) or consent withdrawal (7). Of the 69 patients randomized to placebo, 7 discontinued because of adverse events (1) or consent withdrawal (6).

The most common events in the pardoprunox and placebo groups included nausea (32 vs. 3), asthenia (10 vs. 0), increased blood pressure (5 vs. 3), somnolence (17 vs. 4), and headache (13 vs. 5). Dr. Bronzova of Solvay Pharmaceuticals, which makes pardoprunox and sponsored the study.

In an interview with World Neurology, Dr. William J. Weiner, director of the Maryland Parkinson’s Disease and Movement Disorders Center at the University of Maryland, Baltimore, who was not involved with the study, said that the absolute change between the groups, ~43 points, is not only statistically significant, but also “falls within the range of a clinically meaningful change” but still “similar to that seen with traditional agonists.” Whether or not partial dopamine agonist treatment in PD is better in the short or long term than a traditional dopamine agonist or levodopa remains to be seen. ■

Targeted Deep Brain Stimulation Improved Tic Severity in Tourette’s

By Patrice Wending
Chicago Bureau

Chicago — Deep brain stimulation of limbic relays within the basal ganglia circuitry reduced tic severity in patients with Tourette syndrome.

In three patients with severe and medically refractory TS, researchers applied high-frequency bilateral deep brain stimulation to the centromedian-parafascicular complex (CM-PF) of the thalamus and the ventromedial part of the globus pallidus interna (GPi).

The greatest improvement of tics was seen with ventromedial GPi stimulation, Dr. Luc Mallet said at the 12th International Congress of Parkinson’s Disease and Movement Disorders. The total Yale Global Tic Severity Scale score was reduced 67%, 96%, and 74% from baseline in patients 1, 2, and 3, respectively.

CM-PF stimulation reduced tic severity by 64%, 30%, and 40%, respectively. Combining thalamic and pallidal stimulation did not improve tic reduction (Arch. Neurol. 2008;65:952-7).

In patient No. 2, the best result was obtained after 1 month, but the effects decreased after 2 months, even with increased voltage, said Dr. Mallet of Pitie-Salpetriere Hospital, Paris. Very good long-term effects were observed in patient No. 3, who was identified with borderline personality disorder before surgery. The decrease in tic severity was accompanied by a dramatic reduction in self-injurious behaviors and impulsiveness, allowing the patient to start psychotherapy, to improve autonomy and social relationships, and to return to full-time work 2 years after surgery.

In patient No. 2, a stable reduction in tic severity was achieved 27 months after surgery using 20 hours of pallidal stimulation followed by 4 hours off. In patient 3, tic severity was reduced by 74% at 20 months without medication under pallidal and thalamic stimulation.

DBS is not without risks, said Dr. Mallet in an interview with World Neurology. “DBS should be reserved to the refractory forms of the disease or for patients who are intolerant to pharmacological treatments. Aside from these considerations, there are few drawbacks because DBS is reversible and adjustable through four available contact localizations and through adjustment of electrical parameters, including frequency, pulse width, and voltage.”

In another interview with World Neurology, Dr. Joseph Jankovic, director of the Parkinson’s Disease Center and Movement Disorders Clinic at the Baylor College of Medicine, Houston, who was not involved with the study, said, “it confirms the findings of our initial report of effectiveness and safety of GPi DBS (Neurology 2007;68:159-60) in a 15-year-old boy with malignant Tourette syndrome (Mov. Disord. 2007;22:1743-50). Since this report of the youngest case of TS treated with DBS, we have studied five other patients with similar improvements in their tics as well as their obsessive-compulsive and self-injurious behavior.”

Dr. Jankovic has helped form guidelines for the evaluation of potential candidates for DBS in Tourette (Mov. Disord. 2006;21:1831-8). “Only those patients whose tics are so troublesome that they interfere with normal physical activity, result in self-injury, or are otherwise disabling despite optimal medical treatment should be considered,” he said. ■
The focus of the journal will be on psychiatric research pertinent to Asia produced either within or from outside the continent. This may include preclinical, clinical, service system and policy development research relevant to psychiatry and will highlight the socio-cultural diversity of the region as it pertains to mental health.

The Asian Journal of Psychiatry will publish
- Peer reviewed original research articles
- Review articles
- Commentaries on significant articles
- Synopses of current research highlights from Asia
- And letters to the editor.

It is comprehensive journal of psychiatry for psychiatrists, mental health clinicians, neurologists, physicians, students of mental health and those involved in mental health policy development.

Submit your vital research today!

www.elsevier.com/psychiatry
Dr. Allegri and Dr. Serrano say neurology was born on the continent toward the end of the 19th century.

Dr. Schroeder’s tenure there, the institute, which was renamed Instituto de Neurología Prof. Dr. Américo Ricaldoni, has been ranked among the top in South America. In 1999 the Sociedad de Neurología y Neurocirugía de Montevideo opened with Dr. Schroeder as its first president.

In Venezuela, neurology began when Dr. Pedro B. Castro returned from Paris in 1936, where he had been trained by Prof. Georges Charles Guillain at Salpêtrière. In 1938, Dr. Castro took over as a neurology consultant at Hospital Vargas, Caracas. In 1940, the Universidad Central de Venezuela created the department of neurology and psychiatry and named Dr. Castro its chairman.

Chilean neurology was invigorated in 1939 when Dr. Alfonso Acuña de Aguilera, who was trained in the United States by Dr. Walter Dandy and in Germany by Dr. Wilhelm Tönnis, created the Hospital del Salvador’s service of neurosurgery.

In Buenos Aires in 1941, Dr. Vicente Dimitri was designated professor of neurology at the University of Buenos Aires. With Dr. Dimitri, neurology in Argentina came into its own. In 1943, Dr. Adelbert Tolosa, Dr. Paulino Longo, and Dr. Oswaldo Lange created the Arquivos de Neuropsiquiatria in São Paulo under the direction of Dr. Lange. This journal remains foremost in neuroscience in Latin America, its articles are accessible in Index Medicus, World Health Organization, Bireme, Lilacs, and Latindex.

In 1944, Dr. Deolindo Augusto de Núñez Couto took over as chairman of the department of neurology at Universidade Federal do Rio de Janeiro and consolidated activity in neurology in Brazil. In 1946, he founded the Instituto de Neurología da Universidade Federal do Rio de Janeiro, which carried out extensive research in neurology, neurophysiology, and neurosurgery. This institute, later renamed Instituto de Neurología Deolindo Couto da Universidade Federal do Rio de Janeiro, became the national institute of Brazilian neurology.

In Argentina, Dr. Jose Perryza-Käfer became chairman of the Hospital Ramos Mejía Neurology Service (formerly Hospital San Roque) in Buenos Aires, and then took over as professor of neurology at the University of Buenos Aires. The Sociedad Neurológica Argentina (SNA) was founded in 1957. In 1953, the Instituto de Neurocirugía e Investigaciones Cerebrales de Chile opened, and for the following 35 years it was directed by Dr. Asenjo. Dr. Andrés Rosselli Quijano, who trained in the United States with Dr. Raymond Adams, Dr. Maurice Victor, and Dr. C. Miller Fisher, founded a neurology unit in 1956 that was annexed to the neurosurgery department at Hospital Militar Central de Bogotá. The Sociedad Neurológica de Colombia was formed in 1963.

In 1953 the Archivos Venezolanos de Psiquiatria y Neurologia was created. Neurology and psychiatry became independent specialties in 1959 under Dr. Castro, the first chairman and founder of the new department of neurology at the Universidade de Venezuela. The quarterly Pan-American Congress was conceived within the framework of theWFN. The first open conference was held in October 1963, in Lima, Peru, chaired by Dr. J. Oscar Trelles, the country’s prime minister.

In conclusion, neurology in South America emerged toward the end of the 19th century, following the origin of the specialty in Europe and its official baptism with Charcot at Salpetrière in Paris. The first steps took place almost simultaneously in five countries: Argentina, Brazil, Uruguay, Chile, and Peru. In the other countries, the development of neurology took place later in the 20th century.

Dr. Allegri and Dr. Serrano work at Servicios de Neurología & Neuropsicología and Centro de Estudios Médicos e Investigaciones Clínicas, Buenos Aires. Adapted from a journal article published by Dr. Allegri in the Journal of the Neurological Sciences (J. Neurol. Sci. 2008 Aug 15;271: 29-33).
CAPE TOWN
2011 WORLD CONGRESS
OF NEUROLOGY
BID CITY

350 YEARS AGO, EXPLORERS WERE
IMPRESSED BY ITS CONVENIENCE
AND STUNNED BY ITS BEAUTY.
YOU WILL BE TOO.
most patients with acute neurologic infections survive, but residual problems are common and usually manifest as incomplete resolution of the acute deficits. It is not uncommon, however, to develop new complications several months or even years later. Examples include seizures and the parkinsonian syndrome following encephalitis lethargica.

It has been known that polio patients occasionally experienced a return of their original symptoms decades after an apparently complete resolution; a case report by Raymond and Charcot first appeared in 1873. Sporadic observations of the problem continued until the number of patients became large enough to call attention to this newly recognized clinical entity, post-polioymyelitis syndrome (PPS). Clinical criteria were established in the mid-1980s, and research efforts intensified.

While a number of hypotheses were advanced to explain this late-developing weakness, with concomitant fatigue and pain, none is universally accepted. The comparison with multiple sclerosis (MS), another chronic neurologic disease (with a relapsing and eventually chronic progressive course) in which fatigue is prominent, suggests itself.

The effects of the chronic immune activation in the central nervous system in MS likely manifest themselves in part with fatigue, a well-known and often disabling symptom. Recent studies have looked at specific markers of inflammation and correlated them with symptoms in MS. Various measures of fatigue and pain were catalogued and inflammatory markers in the blood investigated. These included tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6).

Leptin, a recently identified molecule involved in inflammatory processes, body weight, and sleep, also was elevated in PPS. The expectation was that MS, with abundant evidence for a role of active inflammation in causing these symptoms, would be associated with considerably elevated inflammatory markers, compared with PPS and normal controls.

The results of these studies were quite unexpected. The inflammatory markers were elevated in both MS and PPS patients, compared with normal controls.

In a recent paper by a group of investigators from McGill University, Montreal, some of these intriguing results are explained in more detail (J. Neurol. Sci. 2008;271:80-6).

The authors examined 51 postpolomyelitis syndrome patients and a control group of 31 normal, age-matched, local volunteers. The participants had measurements taken of their serum levels of inflammatory markers, fatigue, muscle pain, and strength, as well as disease duration and joint pain.

The authors found that levels of TNF-α, IL-6 and leptin, specifically, were elevated in the patients with PPS, compared with the normal controls. Additionally, TNF-α was correlated with muscle pain.

Dr. Daria A. Trojan, one of the senior authors of this study, is a physiologist who first began seeing PPS patients during her fellowship under Dr. Neal Cashman and has continued as a staff physician in the PPS clinic at the Montreal Neurological Institute. Dr. Trojan pointed out that a prospective study is needed to confirm and extend these results and that they may provide support for a trial of immunomodulating agents in this disease.

While it is too early to state whether these findings have implications for amyotrophic lateral sclerosis, these results document an inflammatory state in one form of motor neuron disease, albeit a much more slowly progressive one.

Dr. Tselis is an associate professor of neurology at Wayne State University, Detroit. He is the book reviews editor for the Journal of the Neurological Sciences.
Site visit to be carried out.

Please vote for Morocco

Marrakesh

Morocco, North Africa
For the World Congress of Neurology, 2011

The Moroccan Society of Neurology has great pleasure to invite you to consider Marrakesh, Morocco as the Host City for the World Congress of Neurology 2011.

Why would you choose Marrakesh?
- **Easy Access:** Morocco is a frontier between Africa and Europe, and Marrakesh is only three hours from many African and European capitals.
- **Modern Congress Facilities:** “Le Palais des Congrès”, an International Center for Exhibition, provides all necessary technical background for organizing a successful meeting. It already hosted several large medical conferences: The World Congress of Neurological Surgery (2005) and the International Congress of Radiology (2008).
- **History and Culture:** In Marrakesh you can meet 1000 years of history at every corner of its Medina (Old city) and follow the steps of Avicenna and Maimonides, masters of medicine and philosophy.
- **Hospitality and Living Art:** In Marrakesh you can find the legendary hospitality of Morocco, its original crafts and one of the most famous gastronomy of the world.

For all these appealing reasons, we invite you to vote for Marrakesh, a wonderful and safe city with a secure environment.

We look forward to welcoming all our colleagues to the World Congress Neurology in 2011, an event which will be exceptional in its scientific content and organization, let alone the wonderful city of Marrakesh with all its magnificence.

The vote for the city that will host the World Congress in 2011 will be taken by national delegates during the Asian-Pacific Congress of Neurology in October 2008 in New Delhi, India.

Please ask your delegate to vote for Marrakesh, Morocco.

For further information on the Moroccan Society of Neurology’s bid to host the World Congress of Neurology 2011, please visit our website at www.MarrakeshWCN2011.com

Site visit to be carried out.
The Practice of Neurology in Mongolia

Training has been cut from 2 years to 1 year; residents are unassalated; exams are not standardized.

By Sarangerel Jambal, M.D.

I am glad to have the great opportunity to write about the practice of neurology in my country, Mongolia. Let’s begin with its interesting history.

The practice of neurology got its start in Mongolia in 1939 with the establishment of 10 neurologic beds in the Central Hospital by the Russian neurologist Dr. N.Ya. Semyonova. In 1947, a neurologist who was a faculty member of Leningrad Medical High School, Dr. G.Ya. Liberson, founded the neurology department in the medical faculty of Mongolian State University. Dr. G. Ya. Liberson’s work was taken over by the first Mongolian neurologists, Dr. G. Lodon and Dr. L. Dagzmaa. In the 1970s and 1980s, the first scientific research works were done in the field of neuroinfections (neurobacteria, epidemicencephalitis, polymyelitis) according to the social and ecological requirements of the country at that time (G. Lodon, D. Rawdandorj). At this time, more than a half of the population in Mongolia consists of more than 20 medical doctors with PHDs and about 200 neurologists. Today, the neurologic service in Mongolia consists of more than 20 medical doctors with PHDs and about 200 neurologists.

The number of neurologists in Mongolia is 7.8 per 100,000 people, which is a very high proportion compared to most other countries of the world. About 60% of all Mongolian neurologists are working in the capital Ulaanbaatar, where more than a half of the population is concentrated (3.5 million of Mongolia’s entire population of 2.5 million people live in the capital city).

The number of neurologic beds is about 900 in the whole country, about 3.7 per 10,000 (Baasanjav D et al, 2006). In recent years, neurologic research has focused on the epidemiology of most common neurologic disorders such as stroke, epilepsy, neurodegenerative and neuroinflammatory diseases.

The stroke epidemiology study revealed that there is a high percentage of the hemorrhagic type (about 50% vs. about 40% ischemic stroke and 10% subarachnoid hemorrhage), which requires special attention to prevention (Baasanjav D et al, 1999).

Also, several research studies were done on epilepsy, which is a significant cause of disability in Mongolia. But because of flaws in the design of these studies, their findings do not distinguish various exact types of epilepsy, limiting the studies’ usefulness.

Established neurologists require but usually do not receive training in order to bring them up to date with the massive increase in new diagnostic methods in recent years. Without such training they risk misinterpreting test results.

Pharmaceutical companies are not inclined to introduce their new drugs in Mongolia because our small population means fewer sales for them.

Some important medical branches in neurology, such as neurorehabilitation, are still nonexistent in the country. Instead, this type of treatment has been replaced by minimally effective traditional treatment methods.

To become familiar with the latest versions of diagnostic and treatment research, the neurologic consultant of the Ministry of Health began to implement a CME program for neurologists.

The younger generation of neurologists eagerly participates in these CME opportunities. All recent information must be translated into Mongolian because knowledge of the English language is not widespread.

Mongolia has 7.8 neurologists per 100,000 people, a very high rate for that part of the world, and 900 neurologic beds. About 60% of all Mongolian neurologists are working in the capital Ulaanbaatar, which has more than half of the population.

The second adult neurology ward and the first one for children were launched, the first department of neurosurgery was founded in nearly all provinces. The training program has been shortened to 1 year.

The neurogenetic workshop was held with the support of the ASIAN Epilepsy Society. In 2006, the first international neurologic INFO-Seminar was held in Ulaanbaatar, with the initiation of WFN and international participation opening new opportunities in foreign relations.

In 2002, the Mongolia neurologic association “Monneurology” was founded, and it became a member of the WFN. In 2001, the first international epilepsy seminar-workshop was held with the support of the ASIAN Epilepsy Society. In 2006, the first international neurologic INFO-Seminar was held in Ulaanbaatar, with the initiation of WFN and international participation opening new opportunities in foreign relations.

Dr. Sarangerel Jambal assesses blood flow using Doppler ultrasound on a patient at the “Reflex” Neurological Clinic in Ulaanbaatar, Mongolia.

Mongolia has 7.8 neurologists per 100,000 people, a very high rate for that part of the world, and 900 neurologic beds.

MONGOLIA HAS 7.8 NEUROLOGISTS PER 100,000 PEOPLE, A VERY HIGH RATE FOR THAT PART OF THE WORLD, AND 900 NEUROLOGIC BEDS.

In most respects, neurology residency training lasted for 2 years during the period from 1997 to 2001 and included psychiatry training. Since 2002, the training program has been shortened to 1 year.

The number of professionals working in the capital Ulaanbaatar, which has more than half of the population, is about 900 in the whole country, about 3.7 per 10,000 (Baasanjav D et al, 2006). In recent years, neurologic research has focused on the epidemiology of most common neurologic disorders such as stroke, epilepsy, neurodegenerative and neuroinflammatory diseases.

The stroke epidemiology study revealed that there is a high percentage of the hemorrhagic type (about 50% vs. about 40% ischemic stroke and 10% subarachnoid hemorrhage), which requires special attention to prevention (Baasanjav D et al, 1999).

Also, several research studies were done on epilepsy, which is a significant cause of disability in Mongolia. But because of flaws in the design of these studies, their findings do not distinguish various exact types of epilepsy, limiting the studies’ usefulness.

Without such training they risk misinterpreting test results. Pharmaceutical companies are not inclined to introduce their new drugs in Mongolia because our small population means fewer sales for them.

Some important medical branches in neurology, such as neurorehabilitation, are still nonexistent in the country. Instead, this type of treatment has been replaced by minimally effective traditional treatment methods.

Established neurologists require but usually do not receive training in order to bring them up to date with the massive increase in new diagnostic methods in recent years. Without such training they risk misinterpreting test results. Pharmaceutical companies are not inclined to introduce their new drugs in Mongolia because our small population means fewer sales for them.

Some important medical branches in neurology, such as neurorehabilitation, are still nonexistent in the country. Instead, this type of treatment has been replaced by minimally effective traditional treatment methods.

To become familiar with the latest versions of diagnostic and treatment research, the neurologic consultant of the Ministry of Health began to implement a CME program for neurologists.

The younger generation of neurologists eagerly participates in these CME opportunities. All recent information must be translated into Mongolian because knowledge of the English language is not widespread.

We are also working on setting and renewing the special standards and guidelines for neurologic diseases which can be generally diagnosed and treated.

Mongolia is located in the center of the Asian continent, is bordered by Russia and China, and, belongs neither among the Southeast, Pacific, nor Middle East countries.

The climate is dry and cold. Mongolia has its own culture and language, and a population with a nomadic style of life that has existed for thousands of years.

We hope our geographical, cultural, and climatic conditions will not be a barrier for expanding our foreign relationships, and we continue to make strides to improve our neurologic services in Mongolia.

Sarangerel Jambal, M.D., known to his friends as Sarang, is a neurologist at the “Reflex” Neurological Clinic in Ulaanbaatar, Mongolia.
Calendar of International Events

2008
9th International Conference on Alzheimer’s Disease Drug Discovery
October 6-7, 2008
New York, USA
www.worldeventsforum.com/addf/9thadd/index.html

36th Annual Meeting of the International Society for Paediatric Neurosurgery (ISPNN)
October 12-16, 2008
Cape Town, South Africa
www.ispnn2008.org

6th International Congress on Mental Dysfunctions & Other Nonmotor Features in Disease
October 16-19, 2008
Dresden, Germany
www.dystonia-europe-2008.org

46th Annual Meeting of the Academy of Aphasia
October 19-21, 2008
Turku, Finland
www.academyofaphasia.org

2nd World Congress on Controversies in Neurology (CONy)
October 23-26, 2008
Athens, Greece
www.contemed.com/cony/2008

October 23-26, 2008
New Delhi, India
www.aocn2008.com

9th International Congress of Neuroimmunology
October 26-30, 2008
Forth Worth, Tex., USA
www.isn2008.org

19th International Symposium on ALS/MND
November 3-5, 2008
Birmingham, England
www.mndassociation.org/research/for_researchers/international_symposium/index.html

European Charcot Foundation Symposium 2008: Multiple Sclerosis and Gender
November 13-15, 2008
Taormina, Italy

1st International Headache Summit
November 14-17, 2008
Tel Aviv, Israel
www.headache-summit.com

Neuroscience 2008
November 15-19, 2008
Washington, D.C., USA
www.sfj.org/am2008

2009
17th Annual International Neuropsychological Society Meeting
February 11-14, 2009
Atlanta, Ga., USA
www.theius.org/meetings

2nd Asian and Oceanian Parkinson Disease and Movement Disorder Congress
February 15-17, 2009
New Delhi, India
www.aopmcindia.com

5th Annual Update Symposium Series on Clinical Neurology & Neurophysiology
February 16-17, 2009
Tel Aviv, Israel
www.neurophysiology-symposium.com

2nd European Brain Policy Forum
February 25-26, 2009
Brussels, Belgium
www.kenes.com/ebpf2009

9th International Conference on Alzheimer’s and Parkinson’s Diseases: Advances, Concepts and New Challenges
March 11-15, 2009
Prague, Czech Republic
www.kenes.com/adpd

5th World Congress of the World Institute of Pain
March 13-16, 2009
New York, USA
www.kenes.com/wip

24th Conference of Alzheimer’s Disease International
March 21-24, 2009
Singapore
www.aadi2009.org

2nd International Symposium on Psychogenic Movement Disorders and Other Conversion Disorders
April 2-4, 2009
Washington, D.C., USA
www.movementdisorders.org/education/pmd

61st Annual Meeting of the American Academy of Neurology
April 23-May 2, 2009
Seattle, Wash., USA
www.aan.com

19th World Congress of Neurology
October 24-30, 2009
Bangkok, Thailand
www.wcn2009bangkok.com

BEFORE THE RESEARCH IS PUBLISHED...
BEFORE THE DRUG IS APPROVED...
BEFORE THE GUIDELINE IS ISSUED...
YOU READ IT FIRST IN

Clinical Neurology News
We Write Medicine’s First Draft
www.clinicalneurologynews.com
S

eering Opportunities: ‘The Reminiscences of a Physician’ (Wealdale, England: Memoir Club, 2008) is a charming and well-written memoir from Dr. Richard Godwin-Austen, former Secretary-Treasurer General of the WFN. Richard came from a distinguished, if in some ways eccentric, family. Among his forebears were knights, generals, and other individuals of distinction. Not least was his great uncle, Henry Haversham Godwin-Austen, who discovered the second-highest mountain of the world, which in my childhood was known as Mount Godwin-Austen, though it is now generally referred to as K2. The name Godwin-Austen still identifies a glacier in the Himalayas.

After Dr. Godwin-Austen’s schooling, training, and subsequent career in London and Devon, he eventually arrived in Nottingham (England) as a consultant neurologist. He served as president of the Association of British Neurologists in addition to his 8-year-long post at the WFN, which he served with distinction.

Among the anecdotes that enliven the text is the story of how the now famous British film actor Hugh Grant, in his earlier, formative years, was a lodger in the Godwin-Austen family home. Another high-light is the author’s experiences during a 3-month stay in Bagdad, when he was called to consult with the then-president of Iraq, shortly before Saddam Hussein assumed power.

More personal episodes from Dr. Godwin-Austen’s life are also faithfully recounted, including his early courtship of Susan Toller. That relationship ended when they realized that the demands of his early career made it impossible for him to marry. She left for the United States. Subsequently, Richard and his first wife, Jane enjoyed an exceptionally happy marriage, which ended with Jane’s tragic death in a motor accident in which Richard suffered only minor injuries; Dr. Godwin-Austen’s description of the accident is quite poignant. His advances, through a mutual friend, toward the woman who was to become his second wife led to another happy marriage, which also is recounted in great detail. Touchingly, Dr. Godwin-Austen has dedicated this volume to both of his wives.

Medical autobiography is a specialized art form, but this book will be read with pleasure by many of Dr. Godwin-Austen’s friends, admirers, and others as well, and is a delightful example of the genre.

John Walton (Lord Walton of Detchant) is the author of several books and a past president of the WFN.

A Track Record of Extending, Connecting, Exchanging

It is almost 40 years since Dr. Raad Shakir, the WFN’s secretary-treasurer general, received his medical degree from the University of Baghdad. Since then, his postgraduate pursuits and his many clinical, research, and academic endeavors have taken him to the United Kingdom, the Middle East, South East Asia, Africa, and the United States.

Members are familiar with Dr. Shakir’s decades of service to the WFN. What they may not know are the years of training and research that prepared him for that task.

Over his career, his chief research area has been tropical neurology. One of his earlier WFN posts was as secretary and then chairman of its tropical neurology research group, then as secretary of the research group’s Asian division.

Building on his experience with Asia, Dr. Shakir worked with Dr. Johan Aarli, WFN president, to bring the Clinical Neurology— and as author of numerous papers and book chapters, as well as ‘Cancer Neurology (published by W. B. Saunders). Lesheen graduated in medicine and neurology training prepared him for the role he has played so well for WFN and other organizations. After receiving his medical degree in Baghdad, Dr. Shakir trained in neurology at the Institute of Neurological Sciences in Glasgow, Scotland. In 1980, he moved to Kuwait, where he was a consultant neurologist and associate professor then academic dean at the University of Kuwait Medical School in Kuwait City. During that time, he spent a year at Harvard Medical School in Boston as a lecturer in the department of neurology.

In 1991, Dr. Shakir became consultant neurologist and clinical lecturer at the University of Washington, Seattle.

One would like to read this volume to learn about the many people he has worked with, the many books and journals he has contributed to, and the many organizations he has been a part of. It is a delightful example of the genre.
A. Martin Halliday, M.D., 1926-2008

BY S.J. JONES, M.D.

Dr. Martin Halliday died March 18, 2008, at the age of 81.

Dr. Halliday's outstanding career in neurology and clinical neurophysiology spanned the exciting decades from 1950 to 1990, when advances in the specialty came frequently.

His pioneering enthusiasm for computer technology placed him at the forefront of research into sensory evoked potentials (EPs), arguably the first noninvasive “window” onto specific processes of the human brain.

While deeply interested in all aspects of brain function, Dr. Halliday never forgot that the chief virtue of EPs consisted in what they could contribute to clinical neurology.

Dr. Halliday showed academic promise from an early age. He passed the entrance examinations for both Oxford and Cambridge universities at 15 years old but was deemed too young to attend.

By the age of 20, he had graduated with first-class honors from the University of Glasgow.

His subsequent medical training was followed by an exemplary period of military service, during which his aptitude for research became apparent. His work on the effect of sleep deprivation on hand tremor was prompted by the need to quantitate and minimize the risks of pilot fatigue during the Berlin airlift.

This led to an invitation from Dr. Arnold Carmichael to join the newly established Medical Research Council unit at the National Hospital for Nervous Diseases in London.

Dr. Halliday’s subsequent esporadical exposure to EP research followed the lead of his colleague Dr. George Dawson, who had shown that consistent stimulus-related potentials could be extracted from the electroencephalogram (EEG) by means of analogue signal-averaging. In 1961, with the inestimable technical assistance of Dawson’s electronic wizard, Jack Pitman, Dr. Halliday introduced the first generation of digital signal-averaging devices to clinical neurophysiology. The nucleus of his team was completed by his research assistant and wife, Lisl.

Dr. Halliday’s most significant clinical breakthrough came in the early 1970s, when his work with Dr. Ian McDonald and Dr. Joan Mushin showed for the first time that visual EPs could be used as a highly sensitive diagnostic test in patients suspected of having optic neuritis or multiple sclerosis (MS).

It was this discovery that led directly to the adoption of similar methods in neuroladiagnostic departments all over the world, and to an explosion of visual EP (VEP) research. Subsequent papers from Dr. Halliday’s lab refined the method and quantitated the diagnostic power of VEPs in MS and other demyelinating diseases, demonstrating the complementariness of VEP methodology with imaging techniques such as magnetic resonance imaging.

It is essentially the same method that remains in use today, and is still regarded as the benchmark test for pathophysiological studies of optic nerve demyelination. Published at the end of his career, the second edition of Dr. Halliday’s largely self-penned reference work, “Evoked Potentials in Clinical Medicine,” seems unlikely ever to be superseded.

One of Dr. Halliday’s many virtues was his insistence on due credit being accorded all his collaborators, including the most junior. A kind friend as well as an inspiring chief, Dr. Halliday was a cultured and humane man whose extra-mural interests extended to the arts (especially music) and philosophy.

Perhaps his least-known contribution was in the promotion of Advaita, a Hindu philosophical school that addresses the ultimate truth underlying the religions of the world.

His third book in this area, “The Spiritual Awakening of Science,” is soon to be published posthumously.

Dr. Jones is Honorary Consultant, National Hospital for Neurology and Neurosurgery, London.

The 13th European Congress of Clinical Neurophysiology

MEETING HIGHLIGHTS

Dr. Rossini said one highlight was the many young investigators in attendance, congress offered an exciting social program. The party dinner and gala dinner were held in enchanting historic buildings in old Istanbul, amid terrific views of the Bosphorus.

The General Assembly of the European Chapter also chose the site of the next Congress.

Presentations were made by the Austrian Society in support of Innbruck, and also by the Italian Society, in support of Rome.

Ultimately, the delegates expressed their votes (22 to 15) in favor of having the next congress in Rome in 2011.

We’ll see you in Rome!
Welcome to the

19th World Congress of Neurology
October 24th-30th, 2009
Bangkok, Thailand

“Innovation in Neurology”

“Deadline for abstract submission is March 31st, 2009. More information regarding abstract submission and guidelines will be announced on the website: www.wcn2009bangkok.com”